• Best of luck to the class of 2025 for their HSC exams. You got this!
    Let us know your thoughts on the HSC exams here

VCE Maths questions help (1 Viewer)

InteGrand

Well-Known Member
Joined
Dec 11, 2014
Messages
6,078
Gender
Male
HSC
N/A
no x intercept means that b^2-4ac < 0
so, 0^2 - 4(p)(q)<0
so, -4pq<0
so, pq <0
is this right?
You don't need to do it that way. Note that the condition pq > 0 gives us precisely two possibilities: either p > 0 and q > 0; or p < 0 and q < 0.

If p > 0 and q > 0, we have px^2 + q > 0 for all real x (since x^2 is non-negative for real x), so the quadratic has no real roots.

If p < 0 and q < 0, we have px^2 + q < 0 for all real x (since x^2 is non-negative for real x), so the quadratic has no real roots.
 

boredsatan

Member
Joined
Mar 23, 2017
Messages
572
Gender
Male
HSC
1998
use algebra to simplify
(x^4 - 16/x+2)/(x^2+4/x-2)
so, ((x^2-4)(x^2+4))/(x+2) * (x-2)/(x^2+4)
not sure how to finish it
 

boredofstudiesuser1

Active Member
Joined
Aug 1, 2016
Messages
567
Gender
Undisclosed
HSC
2018
show that y = 4-6x+2x^2+3x^3 has exactly one x intercept
factorise it
(x+2)(3x^2-4x+2)
b^2 - 4ac = 0
16-4(3)(2) =
16-24 = -8
Not sure how to finish it
Δ < 0 for 3x^2-4x+2
Therefore no real roots

When x+2 = 0
x = -2

Only x-intercept is x=-2

Therefore y only has exactly one x-intercept
 

boredsatan

Member
Joined
Mar 23, 2017
Messages
572
Gender
Male
HSC
1998
A model for the density of a koala population is given by
D = (9t+20)/(t+1), t greater than or equal to 0
show that D = 9+ 11/t+1
not sure what the question is asking
 

boredsatan

Member
Joined
Mar 23, 2017
Messages
572
Gender
Male
HSC
1998
y = (x-2)^2 + 1
inverse function
x = (y-2)^2 + 1
(y-2)^2 + 1 = x
(y-2)^2 = x - 1
y - 2 = √(x-1)
y = √(x-1) + 2
is this correct?
 

boredsatan

Member
Joined
Mar 23, 2017
Messages
572
Gender
Male
HSC
1998
(x-3)^2(x+2) >6
so, (x-3)^2(x+2) =6
so, (x-3)^2(x+2) - 6 = 0
is this correct so far?
 

Squar3root

realest nigga
Joined
Jun 10, 2012
Messages
4,830
Location
ya mum gay
Gender
Male
HSC
2025
Uni Grad
2024
(x-3)^2(x+2) >6
so, (x-3)^2(x+2) >6
so, (x-3)^2(x+2) - 6 > 0
is this correct so far?
yeah it's correct but keep the inequality signs, i have fixed it above

once you solve that inequality you will see that the roots are +sqrt(3), -sqrt(3) and 4

and if u draw the graph the inequality satisfies when -sqrt(3) < x < +sqrt(3) and x > 4
 

boredsatan

Member
Joined
Mar 23, 2017
Messages
572
Gender
Male
HSC
1998
Consider the curve with equation y = 2x^2 - x
a. express the gradient of the secant through the points on the curve where x = -1 and x = -1+ h in terms of h
b. Use h = 0.01 to obtain an estimate of the gradient of the tangent to the curve at x = -1
c. deduce the gradient of the tangent to the curve at the point where x = -1
no idea how to do part b and c
 

InteGrand

Well-Known Member
Joined
Dec 11, 2014
Messages
6,078
Gender
Male
HSC
N/A
Consider the curve with equation y = 2x^2 - x
a. express the gradient of the secant through the points on the curve where x = -1 and x = -1+ h in terms of h
b. Use h = 0.01 to obtain an estimate of the gradient of the tangent to the curve at x = -1
c. deduce the gradient of the tangent to the curve at the point where x = -1
no idea how to do part b and c
Once you've done a), b) is easy (just put h = 0.01 in your formula from a)). To get the answer to c), take the limit as h -> 0 in your answer for part a).
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top