• Best of luck to the class of 2025 for their HSC exams. You got this!
    Let us know your thoughts on the HSC exams here

help integration (1 Viewer)

CriminalCrab

Member
Joined
Mar 14, 2011
Messages
32
Gender
Undisclosed
HSC
2012
Please help solve. The sheet they come from didn't have answers =(

Integrate:
1. (2x+3)/sqrt(x^2+2X+3)
2. (5t^2+3)/t(t^2+1)
3. sqwiggle thing root 3 and -1 (definite integral): X^2/sqrt(4-x^2)
4. (3x^2 -8x^3-19x-14)/(x-3)(x^2+2)

thanks people
 

Mr Slick

Banned
Joined
Apr 27, 2012
Messages
207
Location
Omed's House
Gender
Undisclosed
HSC
N/A
I know how to do em' but cbf doing here .... lol sorry mate
btw u can check answers on wolfram :)
 
Last edited:

Nooblet94

Premium Member
Joined
Feb 5, 2011
Messages
1,041
Gender
Male
HSC
2012
<a href="http://www.codecogs.com/eqnedit.php?latex=I=\int^{\sqrt{3}}_{-1}\frac{x^2}{\sqrt{4-x^2}}\\ $Let $x=2\sin \theta\\ dx=2\cos \theta d\theta\\ x=-1\Rightarrow \theta = -\frac{\pi}{6}\\ x=3 \Rightarrow \theta = \frac{\pi}{3}\\ ~\\ I=4\int^{\frac{\pi}{3}}_{-\frac{\pi}{6}} \frac{\sin^2\theta\cos \theta d\theta}{\cos \theta}\\ =2\int^{\frac{\pi}{3}}_{-\frac{\pi}{6}} (1-\cos 2\theta)d\theta\\ =2\left [\theta-\frac{1}{2}\sin 2\theta \right ]^{\frac{\pi}{3}}_{-\frac{\pi}{6}}\\ =2\left ( \frac{\pi}{3}-\frac{\sqrt{3}}{4}@plus;\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right )\\ =\pi-\sqrt{3}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?I=\int^{\sqrt{3}}_{-1}\frac{x^2}{\sqrt{4-x^2}}\\ $Let $x=2\sin \theta\\ dx=2\cos \theta d\theta\\ x=-1\Rightarrow \theta = -\frac{\pi}{6}\\ x=3 \Rightarrow \theta = \frac{\pi}{3}\\ ~\\ I=4\int^{\frac{\pi}{3}}_{-\frac{\pi}{6}} \frac{\sin^2\theta\cos \theta d\theta}{\cos \theta}\\ =2\int^{\frac{\pi}{3}}_{-\frac{\pi}{6}} (1-\cos 2\theta)d\theta\\ =2\left [\theta-\frac{1}{2}\sin 2\theta \right ]^{\frac{\pi}{3}}_{-\frac{\pi}{6}}\\ =2\left ( \frac{\pi}{3}-\frac{\sqrt{3}}{4}+\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right )\\ =\pi-\sqrt{3}" title="I=\int^{\sqrt{3}}_{-1}\frac{x^2}{\sqrt{4-x^2}}\\ $Let $x=2\sin \theta\\ dx=2\cos \theta d\theta\\ x=-1\Rightarrow \theta = -\frac{\pi}{6}\\ x=3 \Rightarrow \theta = \frac{\pi}{3}\\ ~\\ I=4\int^{\frac{\pi}{3}}_{-\frac{\pi}{6}} \frac{\sin^2\theta\cos \theta d\theta}{\cos \theta}\\ =2\int^{\frac{\pi}{3}}_{-\frac{\pi}{6}} (1-\cos 2\theta)d\theta\\ =2\left [\theta-\frac{1}{2}\sin 2\theta \right ]^{\frac{\pi}{3}}_{-\frac{\pi}{6}}\\ =2\left ( \frac{\pi}{3}-\frac{\sqrt{3}}{4}+\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right )\\ =\pi-\sqrt{3}" /></a>
 

Carrotsticks

Retired
Joined
Jun 29, 2009
Messages
9,467
Gender
Undisclosed
HSC
N/A
I know how to do em' but cbf doing here .... lol sorry mate
btw u can check answers on wolfram :)
Then why bother replying?

This is what I love about BOS... somebody posting a question then some of the most talented Mathematicians on here answer 1 question each, each with their own different style.
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top