• Want to level up your HSC prep on those harder Maths questions?
    Register now for the BoS Trials (7th October)!

General solution (1 Viewer)

Tsylana

Member
Joined
May 4, 2008
Messages
80
Gender
Male
HSC
2009
[FONT=Arial,Helvetica,sans-serif]sin(3θ) = 3sin(θ)cos<sup>2</sup>(θ) - sin<sup>3</sup>(θ)

[/FONT][FONT=Arial,Helvetica,sans-serif]3sin(θ)cos<sup>2</sup>(θ) - sin<sup>3</sup>(θ) = 2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ)

[/FONT][FONT=Arial,Helvetica,sans-serif]3sin(θ)[1-sin<sup>2</sup>(θ)] - [/FONT][FONT=Arial,Helvetica,sans-serif]sin<sup>3</sup>(θ) = [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ)

[/FONT][FONT=Arial,Helvetica,sans-serif]3sin(θ) - [/FONT][FONT=Arial,Helvetica,sans-serif]4sin<sup>3</sup>(θ) - [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) = 0

[/FONT][FONT=Arial,Helvetica,sans-serif]4sin<sup>3</sup>(θ) + [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) [/FONT][FONT=Arial,Helvetica,sans-serif]- 3sin(θ) = 0

Work from there coz im lazy?

[/FONT]
 

lacklustre

Member
Joined
Jan 25, 2007
Messages
178
Gender
Undisclosed
HSC
2008
Tsylana said:
[FONT=Arial,Helvetica,sans-serif]sin(3θ) = 3sin(θ)cos<SUP>2</SUP>(θ) - sin<SUP>3</SUP>(θ)
[/FONT]
[FONT=Arial,Helvetica,sans-serif]How did you know this?
Tsylana said:
[/FONT][FONT=Arial,Helvetica,sans-serif]3sin(θ)cos<SUP>2</SUP>(θ) - sin<SUP>3</SUP>(θ) = 2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ)

[/FONT][FONT=Arial,Helvetica,sans-serif]3sin(θ)[1-sin<SUP>2</SUP>(θ)] - [/FONT][FONT=Arial,Helvetica,sans-serif]sin<SUP>3</SUP>(θ) = [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ)

[/FONT][FONT=Arial,Helvetica,sans-serif]3sin(θ) - [/FONT][FONT=Arial,Helvetica,sans-serif]4sin<SUP>3</SUP>(θ) - [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) = 0

[/FONT][FONT=Arial,Helvetica,sans-serif]4sin<SUP>3</SUP>(θ) + [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) [/FONT][FONT=Arial,Helvetica,sans-serif]- 3sin(θ) = 0

Work from there coz im lazy?

[/FONT]
Hmm lol I'm not sure where to go from there.
 

Tsylana

Member
Joined
May 4, 2008
Messages
80
Gender
Male
HSC
2009
[FONT=Arial,Helvetica,sans-serif]4sin<sup>3</sup>(θ) + [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) [/FONT][FONT=Arial,Helvetica,sans-serif]- 3sin(θ) = 0

4[sin^2
[/FONT][FONT=Arial,Helvetica,sans-serif](θ)sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)] + [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) [/FONT][FONT=Arial,Helvetica,sans-serif]- 3sin(θ) = 0
4[1-cos
[/FONT][FONT=Arial,Helvetica,sans-serif]^2(θ)][[/FONT][FONT=Arial,Helvetica,sans-serif]sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)] + [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) [/FONT][FONT=Arial,Helvetica,sans-serif]- 3sin(θ) = 0

Factorise out sin theta. Reduce it to a quadratic.

Ummm I learned the triple angle expansions off as a rule just to help me in the the exams... but meh.

Just expand Sin
[/FONT][FONT=Arial,Helvetica,sans-serif](2θ+[/FONT][FONT=Arial,Helvetica,sans-serif]θ[/FONT][FONT=Arial,Helvetica,sans-serif])... You should get what i wrote anyway...[/FONT][FONT=Arial,Helvetica,sans-serif][/FONT][FONT=Arial,Helvetica,sans-serif][/FONT]


ok i thought i'd get non-lazy and edit back in the squared signs... but then i pressed the edit button... and got lazy.
 

lacklustre

Member
Joined
Jan 25, 2007
Messages
178
Gender
Undisclosed
HSC
2008
Tsylana said:
[FONT=Arial,Helvetica,sans-serif]4sin<SUP>3</SUP>(θ) + [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) [/FONT][FONT=Arial,Helvetica,sans-serif]- 3sin(θ) = 0

4[sin^2
[/FONT][FONT=Arial,Helvetica,sans-serif](θ)sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)] + [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) [/FONT][FONT=Arial,Helvetica,sans-serif]- 3sin(θ) = 0
4[1-cos
[/FONT][FONT=Arial,Helvetica,sans-serif]^2(θ)][[/FONT][FONT=Arial,Helvetica,sans-serif]sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)] + [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) [/FONT][FONT=Arial,Helvetica,sans-serif]- 3sin(θ) = 0

Factorise out sin theta. Reduce it to a quadratic.

Ummm I learned the triple angle expansions off as a rule just to help me in the the exams... but meh.

Just expand Sin
[/FONT][FONT=Arial,Helvetica,sans-serif](2θ+[/FONT][FONT=Arial,Helvetica,sans-serif]θ[/FONT][FONT=Arial,Helvetica,sans-serif])... You should get what i wrote anyway...[/FONT]


ok i thought i'd get non-lazy and edit back in the squared signs... but then i pressed the edit button... and got lazy.
Wow, thanks a lot. I'll get to work on it then.:p
 

Tsylana

Member
Joined
May 4, 2008
Messages
80
Gender
Male
HSC
2009
[FONT=Arial,Helvetica,sans-serif]Oh yeah, once you factorise out sin(θ) = 0 [/FONT]
[FONT=Arial,Helvetica,sans-serif]
Solve it as a general solution, then completely erase it from the equation to make it look more clean =].
[/FONT]
 
Last edited:

Trebla

Administrator
Administrator
Joined
Feb 16, 2005
Messages
8,498
Gender
Male
HSC
2006
sin 3x = sin 2x
Recall that the general solution of sin a = sin b is:
a = kπ + (-1)k.b (where k is integer valued)
Equivalently, general solution of sin a = c is:
a = kπ + (-1)k.sin-1c (where k is integer valued)

So:
3x = kπ + (-1)k.2x
=> kπ = x[3 - 2.(-1)k]
=> x = kπ/{3 - 2.(-1)k}
where k is integer valued

instead of doing all that expansion...
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top